वादः
Interesting logic:
Why "saat phere" in marriage?
A circle has 360 degrees.
360*7=2520.
So, what is so great about 2520?
2520/1=2520
2520/2=1260
2520/3=840
2520/4=630
2520/5=504
2520/6=420
2520/7=360
2520/8=315
2520/9=280
2520/10=252
प्रतिवादः
OK. It is LCM of numbers 1 to 10. What is so great about that?
वादः
Two people are going around the homam.
Now, 2520*2=5040
5040=1*2*3*4*5*6*7=7!
प्रतिवादः
So is 360*2=720=1*2*3*4*5*6=6!
Remember, you multiplied the twice number of degrees in a circle by 7. So, this is basically the "greatness" of the circle.
वादः
Let us try to represent 2520 in various number systems.
Decimal::
2520=2*10^3+5*10^2+2*10
2520/(2+5+2)=280
Binary::
2520=1*2^11+1*2^8+1*2^7+1*2^6+1*2^4+1*2^3
2520/(1+1+1+1+1+1)=420
Ternary::
2520=1*3^7+1*3^5+1*3^4+1*3^2
2520/(1+1+1+1)=630
Quaternary::
2520 = 2*4^5+1*4^4+3*4^3+1*4^2+2*4^1
2520/(2+1+3+1+2)=280
Quinary::
2520=4*5^4+4*5^1
2520/(4+4)=315
Seximal::
2520=1*6^4+5*6^3+4*6^2
2520/(1+5+4)=252
Septimal::
2520=1*7^4+2*7^2+3*7^1
2520/(1+2+3)=420
Octal::
2520=4*8^3+7*8^2+3*8^1
2520/(4+7+3)=180
Nonary::
2520=3*9^3+4*9^2+1*9
2520/(3+4+1)=315
Undecimal::
2520=1*11^3+9*11^2+9*11^1+1*11^0
2520/(1+9+9+1)=126
Duodecimal::
2520=1*12^3+5*12^2+6*12^1
2520/(1+5+6)=210
Base-13::
2520=1*13^3+1*13^2+11*13^1+11*13^0
2520/(1+1+11+11)=105
Base-14::
2520=12*14^2+12*14^1
2520/(12+12)=105
Base-15::
2520=11*15^2+3*15^1
2520/(11+3)=180
Hexadecimal::
2520=9*16^2+13*16^1+8*16^0
2520/(9+13+8)=84
Base-17::
2520=8*17^2+12*17^1+4*17^0
2520/(8+12+4)=105
Base-18::
2520=7*18^2+14*18^1
2520/(7+14)=120
Base-19::
2520=6*19^2+18*19^1+12*19^0
2520/(6+18+12)=70
Base-20::
2520=6*20^2+6*20^1
2520/(6+6)=210
Base-21::
2520=5*21^2+15*21^1
2520/(5+15)=126
Base-22::
2520=5*22^2+4*22^1+12*22^0
2520/(5+4+12)=120
AND .. this also works for bases 25 to 29, 31 to 37 and 316 more bases till base-2519.
प्रतिवादः
No response.
You can do this with pretty much anything. If you want to fit patterns into something and know enough numeric manipulation, you'll find a way.
ReplyDelete